Maps preserving the local spectrum of the skew Jordan product of operators
نویسندگان
چکیده
منابع مشابه
Maps Preserving the Spectrum of Generalized Jordan Product of Operators
Let A1,A2 be standard operator algebras on complex Banach spaces X1, X2, respectively. For k ≥ 2, let (i1, . . . , im) be a sequence with terms chosen from {1, . . . , k}, and define the generalized Jordan product T1 ◦ · · · ◦ Tk = Ti1 · · ·Tim + Tim · · ·Ti1 on elements in Ai. This includes the usual Jordan product A1 ◦ A2 = A1A2 + A2A1, and the triple {A1, A2, A3} = A1A2A3 + A3A2A1. Assume th...
متن کاملOn strongly Jordan zero-product preserving maps
In this paper, we give a characterization of strongly Jordan zero-product preserving maps on normed algebras as a generalization of Jordan zero-product preserving maps. In this direction, we give some illustrative examples to show that the notions of strongly zero-product preserving maps and strongly Jordan zero-product preserving maps are completely different. Also, we prove that the direct p...
متن کاملMaps Preserving Peripheral Spectrum of Jordan Products of Operators
Let A and B be (not necessarily unital or closed) standard operator algebras on complex Banach spaces X and Y , respectively. For a bounded linear operator A on X, the peripheral spectrum σπ(A) of A is defined by σπ(A) = {z ∈ σ(A) : |z| = maxw∈σ(A) |w|}, where σ(A) denotes the spectrum of A. Assume that Φ : A → B is a map and the range of Φ contains all operators with rank at most two. It is pr...
متن کاملon strongly jordan zero-product preserving maps
in this paper, we give a characterization of strongly jordan zero-product preserving maps on normed algebras as a generalization of jordan zero-product preserving maps. in this direction, we give some illustrative examples to show that the notions of strongly zero-product preserving maps and strongly jordan zero-product preserving maps are completely different. also, we prove that the direct p...
متن کاملAdditive Maps Preserving Idempotency of Products or Jordan Products of Operators
Let $mathcal{H}$ and $mathcal{K}$ be infinite dimensional Hilbert spaces, while $mathcal{B(H)}$ and $mathcal{B(K)}$ denote the algebras of all linear bounded operators on $mathcal{H}$ and $mathcal{K}$, respectively. We characterize the forms of additive mappings from $mathcal{B(H)}$ into $mathcal{B(K)}$ that preserve the nonzero idempotency of either Jordan products of operators or usual produc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Operators and Matrices
سال: 2017
ISSN: 1846-3886
DOI: 10.7153/oam-11-10