Maps preserving the local spectrum of the skew Jordan product of operators

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maps Preserving the Spectrum of Generalized Jordan Product of Operators

Let A1,A2 be standard operator algebras on complex Banach spaces X1, X2, respectively. For k ≥ 2, let (i1, . . . , im) be a sequence with terms chosen from {1, . . . , k}, and define the generalized Jordan product T1 ◦ · · · ◦ Tk = Ti1 · · ·Tim + Tim · · ·Ti1 on elements in Ai. This includes the usual Jordan product A1 ◦ A2 = A1A2 + A2A1, and the triple {A1, A2, A3} = A1A2A3 + A3A2A1. Assume th...

متن کامل

On strongly Jordan zero-product preserving maps

In this paper, we give a characterization of strongly Jordan zero-product preserving maps on normed algebras as a generalization of  Jordan zero-product preserving maps. In this direction, we give some illustrative examples to show that the notions of strongly zero-product preserving maps and strongly Jordan zero-product preserving maps are completely different. Also, we prove that the direct p...

متن کامل

Maps Preserving Peripheral Spectrum of Jordan Products of Operators

Let A and B be (not necessarily unital or closed) standard operator algebras on complex Banach spaces X and Y , respectively. For a bounded linear operator A on X, the peripheral spectrum σπ(A) of A is defined by σπ(A) = {z ∈ σ(A) : |z| = maxw∈σ(A) |w|}, where σ(A) denotes the spectrum of A. Assume that Φ : A → B is a map and the range of Φ contains all operators with rank at most two. It is pr...

متن کامل

on strongly jordan zero-product preserving maps

in this paper, we give a characterization of strongly jordan zero-product preserving maps on normed algebras as a generalization of  jordan zero-product preserving maps. in this direction, we give some illustrative examples to show that the notions of strongly zero-product preserving maps and strongly jordan zero-product preserving maps are completely different. also, we prove that the direct p...

متن کامل

Additive Maps Preserving Idempotency of Products or Jordan Products of Operators

Let $mathcal{H}$ and $mathcal{K}$ be infinite dimensional Hilbert spaces, while $mathcal{B(H)}$ and $mathcal{B(K)}$ denote the algebras of all linear bounded operators on $mathcal{H}$ and $mathcal{K}$, respectively. We characterize the forms of additive mappings from $mathcal{B(H)}$ into $mathcal{B(K)}$ that preserve the nonzero idempotency of either Jordan products of operators or usual produc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Operators and Matrices

سال: 2017

ISSN: 1846-3886

DOI: 10.7153/oam-11-10